
Finally, we again used AIC and likelihood ratio tests to examine whether
parasitism rates were due to gall abundance, gall size, or their interaction.

Simulating the Additive Effects of Genetic Variation on Network Complexity.
For our index of complexity, we chose to use quantitative-weighted linkage
density, LDq, which is based on Shannon diversity and is the average of the
effective number of prey and predatory interactions for a given species,
weighted by their energetic importance (details on how LDq was calculated
are available in SI Appendix and in refs. 38 and 39). LDq (hereafter, food-web
complexity) is less sensitive to variation in sample size compared with other
measures of food-web complexity (39), making it an appropriate measure of
complexity for our study.

To examine whether genetic variation increases food-web complexity, we
designed a resampling procedure to estimate the complexity of the plant–
insect food web at different levels of genetic variation (range: 1–25 geno-
type mixtures) from our empirical data. We omitted 1 of the 26 genotypes
from this analysis (genotype U) because we did not find any galls on the
branches that we sampled. Our resampling procedure consisted of the fol-
lowing two steps. (i) Generate quantitative matrices: To ensure willow
genotypes had equal sampling effort, we randomly sampled four individual
willows of each genotype (without replacement) and their corresponding
trophic interactions (willow–gall and gall–parasitoid). Next, we calculated
the total abundance of each trophic interaction associated with each ge-
notype, resulting in a quantitative matrix of 25 genotypes (rows) and 16
unique trophic interactions (columns, four willow–gall and 12 gall–parasit-
oid). (ii) Sampling genetic variation: With this matrix, we randomly sampled
1–25 genotypes (without replacement), 200 times each, and calculated the
total abundance of each trophic interaction associated with each level of
genetic variation. We removed redundant combinations of genotypes that
were generated by our random sampling. We then calculated food-web
complexity for each sample and then calculated the average complexity for
each level of genetic variation. Finally, we repeated this sampling procedure
on 50 different matrices to quantify the variability in our estimates of av-
erage food-web complexity. This resampling procedure is analogous to
methods used in experimental studies (e.g., 26, 27) to estimate the expected
additive effects of genetic variation on arthropod diversity.

One constraint of our experimental design and resampling procedure is
that estimates of complexity from mixtures with more genotypes are based
offmore plants (e.g., 1-genotype, 4-plantmixtures vs. 25-genotype, 100-plant
mixtures). This would not be a problem if, for example, we had measures of
trophic interactions on 25 replicate plants of each willow genotype because
we could directly compare 1-genotype, 25-plant mixtures with 25-genotype,
25-plant mixtures. Therefore, it is important to account for the increase in
food-web complexity that may come from simply sampling more plants. We
estimated this sampling effect by first using our resampling procedure to
generate 1,000 estimates of average complexity for one-genotype mixtures
based on progressively higher levels of sampling effort (one to four plants). We
then used an asymptotic model (40) to predict the average complexity of food
webs in 1-genotype, 100-plant mixtures to use as a baseline for estimating the
additive effects of genetic variation (Fig. 6, dashed line). Details of the asymp-
totic model and our evaluation of alternative models are given in SI Appendix.

To examine the pathways by which genetic variation influences food-web
complexity, we built a piecewise structural equation model (details given in
SI Appendix) using data from 1 of the 50 replicates of our resampling pro-
cedure. We observed the same qualitative results when we explored other
replicates, so we report only the quantitative results from the first replicate.

All statistical analyses were conducted in R version 3.1.2 (41).
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Table S1: Statistical models testing the genetic specificity of the plant-insect food web. 
 

Response df F or χ2 P 
Gall size1     

  Leaf gall 23,57 2.17 0.009 
  Bud gall 21,44 0.98 0.504 
  Apical-stem gall 16,12 0.29 0.988 

Gall abundance2 25,119 202.40 0.001 
Leaf gall  74.60 0.001 
Bud gall  55.02 0.006 
Apical-stem gall  44.47 0.042 
Mid-stem gall  28.27 0.295 

Composition of gall community3 22,89 1.96 0.001 
Abundance of gall-parasitoid 
interactions2 

25,119 357.10 0.001 

Leaf gall    
Platygaster sp.  79.51 0.001 
Mesopolobus sp.  50.00 0.009 
Torymus sp.  60.11 0.001 
Tetrastichus sp.  32.96 0.105 
Mymarid sp. A  6.37 0.448 

Bud gall    
Platygaster sp.  18.04 0.276 
Mesopolobus sp.  6.37 0.497 
Torymus sp.  39.81 0.079 
Tetrastichus sp.  18.09 0.492 
Lestodiplosis sp.  16.05 0.552 

Apical-stem gall    
Torymus sp.  23.13 0.048 

Mid-stem gall    
Platygaster sp.  6.64 0.452 

Composition of gall-parasitoid 
interactions3 

12,45 1.57 0.007 

Proportion of galls parasitized4    
Leaf gall 23,58 75.79 <0.001 

Platygaster sp.  93.47 <0.001 
Mesopolobus sp.  42.56 0.008 
Torymus sp.  42.92 0.007 
Tetrastichus sp.  29.55 0.163 
Mymarid sp. A  3.97 0.999 

Bud gall 21,46 31.13 0.072 
Apical-stem gall 18,12 15.69 0.614 

Composition of trophic interactions in 
the plant-insect food web3  

22,89 1.90 0.001 



Notes: 1GLM (error distribution = Gaussian, link function = identity), log-transformed; 
2multivariate GLM (error distribution = negative binomial, link function = log); 
3PERMANOVA on Bray-Curtis dissimilarities (999 permutations);  
4GLM (error distribution = binomial, link function = logit). P-values in bold (P < 0.05), 
italics (P < 0.10), and normal font (P > 0.10) denote degree of statistical significance. 
 
 
Table S2: Statistical models explaining insect food web responses to genetic variation in 
coastal willow (Salix hookeriana). We report the coefficients of all predictor variables 
that were included in the final statistical models, which were determined using AIC and 
likelihood-ratio tests. 
Response Predictors 

Gall size1 
Salicylates/ 

Tannins PC1 
Flavones/ 

Flavonols PC1   
Leaf gall -0.20 -0.26   

Gall abundance2 C:N 
Flavanones/ 

Flavanonols PC1 Plant size  
Leaf gall 0.04 -0.03 -0.36  
Bud gall 0.08 -0.07 -1.01  
Apical-stem gall 0.01 0.46 0.26  
Mid-stem gall 0.02 -1.81 -4.77  

Abundance of gall-
parasitoid 
interactions2 

Leaf gall 
size 

Leaf gall 
abundance 

Bud gall 
abundance 

Apical-stem gall 
abundance 

Leaf gall     
Platygaster sp. -0.22 1.22 0.20 -0.15 
Mesopolobus sp. -0.27 0.90 -0.26 0.44 
Torymus sp. 0.19 0.76 -0.30 0.72 
Tetrastichus sp. -0.24 0.71 0.45 -1.09 
Mymarid sp. A -1.67 20.83 -2.07 3.35 

Bud gall     
Platygaster sp. 0.43 0.23 5.81 -14.25 
Mesopolobus sp. 0.16 0.30 0.77 1.95 
Torymus sp. -0.17 0.31 1.39 -0.43 
Tetrastichus sp. 0.15 0.51 1.83 0.08 
Lestodiplosis sp. 0.04 -0.61 1.46 1.75 

Apical-stem gall     
Torymus sp. -0.12 0.05 -0.64 4.09 

Mid-stem gall     
Platygaster sp. 1.54 -15.03 0.53 -9.23 

Notes: 1GLM (error distribution = Gaussian, link function = identity), log-transformed; 
2multivariate GLM (error distribution = negative binomial, link function = log). P-values 
in bold (P < 0.05), italics (P < 0.10), and normal font (P > 0.10) denote degree of 
statistical significance. 
 
 



Table S3: Generalized linear models (error distribution = binomial, link function = logit) 
explaining the proportion of leaf galls parasitized. Final models were determined using 
AIC and likelihood-ratio tests. 
Response Predictor df χ2 P 
Total parasitism Gall size 1,79 22.28 <0.001 
Platygaster sp. Gall size 1,77 17.58 <0.001 
 Gall abundance 1,77 0.73 0.394 
 Gall size x abundance 1,77 8.71 0.003 
Mesopolobus sp. Gall size 1,77 7.28 0.007 
 Gall abundance 1,77 0.29 0.588 
 Gall size x abundance 1,77 4.21 0.040 
Torymus sp. Gall size 1,78 3.83 0.050 
 Gall abundance 1,78 5.24 0.022 
 
Relatedness and functional-trait diversity of willow genotypes – The matrix of 
microsatellite markers for the 26 willow genotypes used in this study was published in 
Table S1 of (1); however, since the willow genotyping was only based on 2 markers, they 
were unable to infer the relatedness among genotypes. If certain genotypes are more 
closely related to each other, and consequently have very similar phenotypes, this could 
introduce spurious confidence in our associations between willow traits and gall 
abundances/phenotypes. We can examine this phenotypic similarity by measuring the 
functional evenness and divergence of the 26 willow genotypes in multivariate trait space  
(2). To do this, we calculated the average trait value for each of the 40 traits we measured 
for each willow genotype. We then calculated functional evenness and functional 
divergence using the ‘FD’ package in R. For both indices, values close to zero 
correspond to functional redundancy, while values close to one indicate functional 
distinctiveness. We found that functional evenness and divergence were equal to 0.94 and 
0.87, respectively, suggesting that the phenotypes (in multivariate trait space) of each 
genotype are quite distinct from each other. Therefore, we argue that not knowing the 
relatedness among the 26 genotypes probably introduces little bias in our trait 
associations with the abundances and sizes of galls. 
 
Sampling interactions in gall-parasitoid network – The total number of potential gall-
parasitoid interactions in this bipartite network is 24 (i.e. each of the 4 galls could interact 
with each of the 6 parasitoids, 6*4 = 24). Interspecific differences among gall species (e.g. 
differences in gall morphology, phenology, plant part galled) and sampling effort likely 
constrain the number of potential interactions observed to considerably less than 24. 
While it was not the focus of our study to examine interspecific differences, it is 
important to demonstrate that we have sampled the majority of interactions in the gall-
parasitoid network. To demonstrate this, we considered unique gall-parasitoid 
interactions as ‘species’ and used Chao 1 (3) to estimate the total number of interactions. 
While we documented 12 unique gall-parasitoid interactions, Chao 1 estimated the 
number of interactions to be 14.98 (std. error = 4.49), suggesting that we have sampled 
the majority of interactions in the gall-parasitoid network. 
 
Calculating quantitative-weighted linkage density (food-web complexity) – 



Quantitative-weighted linkage density, 𝐿𝐷!, was calculated using the following equations  
(4). Given an s-by-s food web matrix b = 𝑏!" , with 𝑏!" corresponding to the number of 
individuals of species j (galls or parasitoids) emerging from species i (willow or galls) per 
willow branch over a single growing season, 𝑏! . is the sum of row i, 𝑏.! is the sum of 
column j, and 𝑏.. is the total sum. The Shannon indices for the prey and predatory 
interactions were calculated as, 

𝐻! = −
𝑏!"
𝑏.!

!

!!!

ln
𝑏!"
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 The effective number of prey and predatory interactions were calculated as 𝑁!∗ =
exp 𝐻!  and 𝑁!∗ = exp 𝐻! , respectively. Finally, quantitative-weighted link density was 
calculated as,   

𝐿𝐷! =   
1
2𝑏. . 𝑏! .𝑁!∗   +    𝑏.! 𝑁!∗
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Asymptotic vs. non-asymptotic models – We fit both asymptotic and non-asymptotic 
phenomenological models (5) to extrapolate our estimates of food-web complexity. 
While more sophisticated and accurate models have been developed to extrapolate 
species richness (3), nothing has been developed for extrapolating food-web complexity. 
These phenomenological models have the advantage that they make no assumptions 
about the processes generating the data (3); therefore, they are likely a good starting point 
for extrapolating food-web complexity.  

For our asymptotic model we used a scaled and shifted Michaelis-Menten 
function (6) of the form,  
𝐿𝐷!,! =

!(!!!)
(!!(!!!)

+ 𝐿𝐷!,!,  
where N represents either the number of plants (sampling effort simulation) or the 
number of genotypes (genetic variation simulation). LDq,N is the predicted complexity at 
N, while a and b are phenomenological parameters that scale LDq,N  and N, respectively. 
𝐿𝐷!,! is a constant parameter, representing the average complexity for mixtures of either 
1-genotype 1-plant (sampling effort simulation) or 1-genotype 4-plants (genetic variation 
simulation). Adding the constant, 𝐿𝐷!,!, and subtracting the constant, 1, shift the function 
so that when N = 1, 𝐿𝐷!,! = 𝐿𝐷!,! . We used non-linear least squares to estimate 
parameters a and b. For the non-asymptotic models, we fit log-log 
(log(𝐿𝐷!,!) = m ∗ log(𝑁)+ 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡) and log-linear (𝐿𝐷!,! = m ∗ log(𝑁)+
𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡) models. The asymptotic and non-asymptotic models we chose have been 
widely used for extrapolating species richness (5), which is why we used them for food-
web complexity. 



 
Results for simulations of sampling effort and genetic variation – We fit the 
asymptotic and non-asymptotic models to our sampling effort simulations of 1-genotype 
mixtures of 1 to 4 plants (1,000 estimates per level of sampling effort, details in Materials 
and Methods). We found that all of the models gave a similar fit to the data; however, 
they gave very different predictions for the complexity of 1-genotype 100-plant mixtures 
(Table S4). Therefore, to evaluate which of these models was more realistic, we re-fit 
these models to our genetic variation simulations of 1 to 25 genotypes (grey circles in Fig. 
6 of main text). We found that the asymptotic model provided a much better fit (R2 = 
0.96) and more accurate predictions than either of the non-asymptotic models (Table S5). 
In particular, the asymptotic model’s predicted complexity of 25-genotype 100-plant 
mixtures deviated less than a tenth of 1% from the observed average (LDq = 2.209), 
whereas the non-asymptotic models overestimated complexity by 2.4% (log-linear) and 
3.1% (log-log).  
 
Table S4: Comparing asymptotic and non-asymptotic models for predicting the 
complexity of 1-genotype 100-plant mixtures. Note that for these data (sampling effort 
simulation), N represents the number of plants. 

Model type Equation R2 

Predicted LDq 
1-genotype 
100-plant 
mixture 

Asymptotic  
(Michaelis-Menten) 𝐿𝐷!,! =

0.62(𝑁 − 1)
(3.62+ (𝑁 − 1)+ 1.25 0.885 1.84 

Non-asymptotic 
(log-log) log(𝐿𝐷!,!) = 0.15 ∗ log(𝑁)+ 0.22 0.881 2.45 

Non-asymptotic  
(log-linear) 𝐿𝐷!,! = 0.20 ∗ log(𝑁)+ 1.24 0.884 2.17 

 
Table S5: Comparing asymptotic and non-asymptotic models for predicting the 
complexity of 25-genotype 100-plant mixtures. The observed complexity of the 25-
genotype 100-plant mixture was 2.209. Note that for these data (genetic variation 
simulation), N represents the number of genotypes. 

Model type Equation R2 

Predicted LDq 25-
genotype 
100-plant mixture 

Asymptotic 
(Michaelis-Menten) 𝐿𝐷!,! =

0.76(𝑁 − 1)
(2.25+ (𝑁 − 1)+ 1.52 

0.96 2.210 

Non-asymptotic 
(log-log) 

log(𝐿𝐷!,!) = 0.10 ∗ log(𝑁)+ 0.50 0.87 2.277 

Non-asymptotic 
(log-linear) 

𝐿𝐷!,! = 0.19 ∗ log(𝑁)+ 1.65 0.89 2.262 

 
Assessing the accuracy of the asymptotic model – After we identified the asymptotic 
model as the most appropriate for our data, we wanted to evaluate whether the model was 
likely to over- or under-estimate the complexity of 1-genotype 100-plant mixtures. To do 



this, we took advantage of the complete data set we had for the genetic variation 
simulation. Specifically, we refit the asymptotic model with smaller fractions of data to 
examine how accurately it extrapolated to predict the complexity of 25-genotype 100-
plant mixtures. When we did this, we found that the model began to increasingly 
overestimate food-web complexity, but only slightly. For example, using only the first 
40% of the data (i.e. 1 to 10 genotypes), the model overestimated food-web complexity 
by less than 0.5%, while, using only the first 16% of the data (e.g. 1 to 4 genotypes), the 
model overestimated food-web complexity by 0.9%. Since our asymptotic model for the 
sampling effort simulation is extrapolating based on 4% of the potential data (4 of 100 
plants), the predicted complexity of 1-genotype 100-plant mixtures is likely an 
overestimate. This suggests that the reported effect of 20% is a conservative estimate of 
the additive effects of genetic variation. 
 
Structural equation model of food-web complexity – For our plant-insect food web, 
complexity is principally determined by three components: (i) the effective number of 
gall species per willow (i.e. Shannon diversity of galls); (ii) the effective number of 
parasitoid species per gall (vulnerability, Vq); and (iii) the effective number of gall 
species per parasitoid (generality, Gq) (4). Increases in any of these 3 components, all else 
equal, will directly increase food-web complexity. Moreover, the total abundance and 
diversity of galls may indirectly affect complexity by influencing the vulnerability and 
generality of the gall-parasitoid network. Therefore, we built our structural equation 
model to incorporate these different pathways. In addition, since species diversity is 
determined by both the evenness and richness of a community, we partitioned gall 
diversity into its evenness (E1 = exp(Shannon diversity)/richness) and richness 
components (7) before building the model. Given the non-linear relationship between 
genetic variation and food-web complexity (Fig. S1), we restricted our analysis to the 
first 4-levels of genetic variation. We feel this was justified for two reasons: (i) this was 
the portion of the relationship that increased the most; and (ii) this was the only portion of 
the relationship that was mostly linear with constant variance, thereby satisfying the 
assumptions of the linear regression models that made up our structural equation model. 
Finally, we used a test of directed separation (8), which essentially tests whether there are 
any significant paths missing from the model. For tests of directed separation, P > 0.05 
indicates that the model provides a good fit to the data (i.e. no missing paths), whereas P 
< 0.05 indicates a model with missing paths.  
 
Fig. S1 shows the data from the one replicate simulation that we used to evaluate the 
structural equation model in Fig. S2. We found that this model provided a good fit to the 
data (Fisher C = 11.61, k = 6, P = 0.071). In particular, we found that genetic variation 
increased food-web complexity primarily by: (i) an increase in gall richness that directly 
increased complexity (0.40*0.52 = 0.21); and (ii) an increase in gall abundance that 
indirectly increased complexity by increasing gall vulnerability (0.57*0.55*0.83 = 0.26). 
Interestingly, gall evenness had a small overall negative effect on complexity ((-
0.18*0.39) + (-0.18*-0.32*0.83) + (-0.18*0.25*0.28) = -0.03). 
 



 
Figure S1. One of 50 replicate simulations, showing the positive relationship between 
willow genetic variation and food-web complexity. Grey circles represent estimates of 
food-web complexity for specific samples, whereas blue circles represent the average 
complexity at each level of genetic variation. These data were used in the structural 
equation model (Fig. S2). 
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Figure S2. Structural equation model of the paths by which genetic variation influences 
food-web complexity. Blue and red arrows indicate positive and negative relationships, 
respectively. One-way arrows indicate modelled paths, whereas double-headed arrows 
indicate correlated relationships. Numerical values in the middle of each path represent 
the standardized path coefficients and can be used to determine the magnitude of direct 
and indirect effects. 
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